本书提供了复流形理论的完整自洽论述,将抽象原理、几何直观和实际应用完美结合。内容特点包括:
-
基础理论:全纯函数、凯勒度量和上同调
-
核心对象:黎曼曲面、代数曲线和射影簇
-
前沿专题:霍奇理论、二次线丛和形变理论
-
计算工具:具体算例和问题解决技巧
从解析基础到现代几何结果层层递进,特别强调与代数几何和数学物理的联系。亮点包含:
✓ 附100余道习题及精选解答
✓ 小平嵌入定理的详细证明
✓ 超弦理论和镜像对称的应用
✓ 关键理论的历史发展注释
标签:
This authoritative text provides a self-contained treatment of complex manifold theory, seamlessly blending abstract principles with geometric intuition and practical applications. Designed for graduate students and researchers, the book systematically develops:
-
Foundational Theory: Holomorphic functions, Kähler metrics, and cohomology
-
Core Geometric Objects: Riemann surfaces, algebraic curves, and projective varieties
-
Advanced Topics: Hodge theory, quadric line complexes, and deformation theory
-
Computational Tools: Explicit examples and problem-solving techniques
The exposition progresses from analytic basics to cutting-edge geometric results, emphasising connections to algebraic geometry and mathematical physics. Special features include:
✓ Over 100 exercises with selected solutions
✓ Detailed treatment of Kodaira’s embedding theorem
✓ Applications to string theory and mirror symmetry
✓ Historical notes on key developments